Workshop Advanced Simulations: A Critical Tool for Future Nuclear Fuel Cycles

Material Simulation Needs For Advanced Reactors

Bill Halsey (LLNL)
Livermore, CA
12/15/2005

Why Do We Need Advanced Materials Simulations?

- We don't need advanced simulations to deploy Gen-III LWRs:
 - Certified, demonstrated and ready to go
- We don't need advanced simulations to build reactors:
 - SFR Dozens built, some 50 years ago
 - LFR Half-dozen over decades
 - HTGR Several of several designs, decades
 - MSR 40 years ago
 - SCWR, GFR no demo, but not because of material models
- ♦ We don't need advanced simulations to license reactors:
 - Hundreds licensed globally, dozens of designs
 - NRC processes for advanced reactors, LBT, ...

Why Do We Need Advanced Materials Simulations?

- We need advanced simulations to make advanced reactors more competitive:
 - Push temperature, fluence, and stress beyond experience
- We need advanced simulations to make advanced reactors more reliable:
 - Long lifetime, minimal maintenance, high reliability
- We need advanced simulations to make advanced reactors more flexible:
 - Wider range of operating conditions, load following, multi-mission,...
- **♦** We need advanced simulations to save time and money:
 - Concurrent, parallel design/optimization of materials and reactors
 - Concurrent, parallel testing and model development
 - Understand what we measure, predict beyond what we can measure, and design experiments fo understand further

Example: Current Den-IV SSTAR LFR Point-design: 20 Mwe, 20 year core (ANL design)

Core Diameter, m	1.02
Active Core Height, m	0.8
Nitride Fuel Smeared Density, %	85
Fuel Volume Fraction	0.55
Cladding Volume Fraction	0.16
Bond Volume Fraction	0.10
Coolant Volume Fraction	0.16
Fuel Pin Diameter, cm	2.7
Fuel Pin Pitch-to-Diameter Ratio	1.096
Cladding Thickness, mm	1.0
Average Power Density, W/cm ³	69
Specific Power, KW/Kg HM	10
Peak Power Density, W/cm ³	119
Average Discharge Burn up, MWd/Kg HM	72
Peak Discharge Burn up, MWd/Kg HM	120
Peak Fast Fluence, n/cm ²	$4.0x10^{23}$
BOC to EOC Burn up Swing, % delta rho	0.13
Maximum Burn up Swing, % delta rho	0.36
Estimated Delayed Neutron Fraction	0.00375
BOC to EOC burn up Swing, \$	0.35
Maximum Burn up Swing, \$	0.96

STAR-LM Features

Materials Issues

- **♦** Both Pb and LBE are challenging corrosion environments
 - Oxygen Control:
- ◆ Temperature drives the material options
 - Known materials may work up to 500 550C
 - Evolutionary or new materials needed for desired performance (550-650C)
- ♦ High fast neutron fluences complicate the issue
 - Design is constrained by 4x10²³ n/cm² limit
- ◆ Simple, long-core-life adds unique demands
 - Corrosion life, creep, thermal alteration
 - High reliability required (limited inspection, full core replacement, ...)
- **♦** Low pressure system gives some relief on stress

Advanced Simulations can help with many of these issues.

Example: LFR Fast Neutron Fluence

- We have experimental data for materials that are not optimized for Pb corrosion
 - HT-9 to 4X10²³ n/cm²/s
 - T-91, MA957, ...
- Evolutionary materials for Pt service:
 - Si and/or Al enhanced, ODS, ...
 - Radiation trade-off (Cr vs Si, ...)
- We can only test with nonrepresentative conditions
 - Ion irradiations to high dose
 - Fast neutrons to low/medium fluence, limited temp, no Pb

We need sufficient models to extrapolate

Materials Simulations Must Bridge Basic Science to Applied Engineering

- Design Feedback
 - Temp/Stress/Time/Fluence
 - Thermal creep
 - Irradiation creep
 - Swelling
 - Fracture toughness
- ♦ Material Design
 - Composition/Treatment -Bulk/Surface
- ♦ Test Planning and Analysis
 - Understanding/Prediction/ Optimization
- Materials Qualification
 - Testing/modeling/standards/ regulation

Simulations are \$10⁷-10⁸ & 5-10 years from these abilities. However, testing is \$10⁸-10⁹ and 10-30 years from these answers.

Challenge: what can simulations provide to design 'along the way'?